Acoustic analysis and mood classification of pain-relieving music.
نویسندگان
چکیده
Listening to preferred music (that which is chosen by the participant) has been shown to be effective in mitigating the effects of pain when compared to silence and a variety of distraction techniques. The wide range of genre, tempo, and structure in music chosen by participants in studies utilizing experimentally induced pain has led to the assertion that structure does not play a significant role, rather listening to preferred music renders the music "functionally equivalent" as regards its effect upon pain perception. This study addresses this assumption and performs detailed analysis of a selection of music chosen from three pain studies. Music analysis showed significant correlation between timbral and tonal aspects of music and measurements of pain tolerance and perceived pain intensity. Mood classification was performed using a hierarchical Gaussian Mixture Model, which indicated the majority of the chosen music expressed contentment. The results suggest that in addition to personal preference, associations with music and the listening context, emotion expressed by music, as defined by its acoustical content, is important to enhancing emotional engagement with music and therefore enhances the level of pain reduction and tolerance.
منابع مشابه
A method for Music Classification based on Perceived Mood Detection for Indian Bollywood Music
A lot of research has been done in the past decade in the field of audio content analysis for extracting various information from audio signal. One such significant information is the ”perceived mood” or the ”emotions” related to a music or audio clip. This information is extremely useful in applications like creating or adapting the play-list based on the mood of the listener. This information...
متن کاملMulti-Modal Non-Prototypical Music Mood Analysis in Continuous Space: Reliability and Performances
Music Mood Classification is frequently turned into ‘Music Mood Regression’ by using a continuous dimensional model rather than discrete mood classes. In this paper we report on automatic analysis of performances in a mood space spanned by arousal and valence on the 2.6 k songs NTWICM corpus of popular UK chart music in full realism, i. e., by automatic web-based retrieval of lyrics and diverse...
متن کاملThinkit’s Submissions for Mirex2009 Audio Music Classification and Similarity Tasks
This full abstract describes our submitted systems for the MIREX09 audio classification tasks (genre, mood, classical composer, audio tagging) and music similarity and retrieval task. All the classification systems are based on basic acoustic features (e.g. MFCC) and the modeling framework of GSV-SVM, which has been successfully applied in speaker recognition field. And the similarity systems a...
متن کاملMusic Retrieval and Recommendation Scheme Based on Varying Mood Sequences
A typical music clip consists of one or more segments with different moods and such mood information could be a crucial clue for determining the similarity between music clips. One representative mood has been selected for music clip for retrieval, recommendation or classification purposes, which often gives unsatisfactory result. In this paper, the authors propose a new music retrieval and rec...
متن کاملشناسایی خودکار سبک موسیقی
Nowadays, automatic analysis of music signals has gained a considerable importance due to the growing amount of music data found on the Web. Music genre classification is one of the interesting research areas in music information retrieval systems. In this paper several techniques were implemented and evaluated for music genre classification including feature extraction, feature selection and m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 130 3 شماره
صفحات -
تاریخ انتشار 2011